Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.

Identifieur interne : 002B38 ( Main/Exploration ); précédent : 002B37; suivant : 002B39

Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.

Auteurs : Shawn D. Mansfield [Canada] ; Kyu-Young Kang ; Clint Chapple

Source :

RBID : pubmed:22239166

Descripteurs français

English descriptors

Abstract

• There is a pressing global need to reduce the increasing societal reliance on petroleum and to develop a bio-based economy. At the forefront is the need to establish a sustainable, renewable, alternative energy sector. This includes liquid transportation fuel derived from lignocellulosic plant materials. However, one of the current limiting factors restricting the effective and efficient conversion of lignocellulosic residues is the recalcitrance of the substrate to enzymatic conversion. • In an attempt to assess the impact of cell wall lignin on recalcitrance, we subjected poplar trees engineered with altered lignin content and composition to two potential industrial pretreatment regimes, and evaluated the overall efficacy of the bioconversion to ethanol process. • It was apparent that total lignin content has a greater impact than monomer ratio (syringyl : guaiacyl) on both pretreatments. More importantly, low lignin plants showed as much as a 15% improvement in the efficiency of conversion, with near complete hydrolysis of the cellulosic polymer. • Using genomic tools to breed or select for modifications in key cell wall chemical and/or ultrastructural traits can have a profound effect on bioenergy processing. These techniques may therefore offer means to overcome the current obstacles that underpin the recalcitrance of lignocellulosic substrates to bioconversion.

DOI: 10.1111/j.1469-8137.2011.04031.x
PubMed: 22239166


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.</title>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. shawn.mansfield@ubc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kang, Kyu Young" sort="Kang, Kyu Young" uniqKey="Kang K" first="Kyu-Young" last="Kang">Kyu-Young Kang</name>
</author>
<author>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22239166</idno>
<idno type="pmid">22239166</idno>
<idno type="doi">10.1111/j.1469-8137.2011.04031.x</idno>
<idno type="wicri:Area/Main/Corpus">002B72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B72</idno>
<idno type="wicri:Area/Main/Curation">002B72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B72</idno>
<idno type="wicri:Area/Main/Exploration">002B72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.</title>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. shawn.mansfield@ubc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kang, Kyu Young" sort="Kang, Kyu Young" uniqKey="Kang K" first="Kyu-Young" last="Kang">Kyu-Young Kang</name>
</author>
<author>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (analysis)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cell Wall (metabolism)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>RNA Interference (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Trees (cytology)</term>
<term>Trees (metabolism)</term>
<term>Wood (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (cytologie)</term>
<term>Arbres (métabolisme)</term>
<term>Biocarburants (analyse)</term>
<term>Bois (métabolisme)</term>
<term>Fermentation (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Biocarburants</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Ethanol</term>
<term>Lignin</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Bois</term>
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Fermentation</term>
<term>Hydrolysis</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fermentation</term>
<term>Hydrolyse</term>
<term>Interférence par ARN</term>
<term>Métabolisme glucidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">• There is a pressing global need to reduce the increasing societal reliance on petroleum and to develop a bio-based economy. At the forefront is the need to establish a sustainable, renewable, alternative energy sector. This includes liquid transportation fuel derived from lignocellulosic plant materials. However, one of the current limiting factors restricting the effective and efficient conversion of lignocellulosic residues is the recalcitrance of the substrate to enzymatic conversion. • In an attempt to assess the impact of cell wall lignin on recalcitrance, we subjected poplar trees engineered with altered lignin content and composition to two potential industrial pretreatment regimes, and evaluated the overall efficacy of the bioconversion to ethanol process. • It was apparent that total lignin content has a greater impact than monomer ratio (syringyl : guaiacyl) on both pretreatments. More importantly, low lignin plants showed as much as a 15% improvement in the efficiency of conversion, with near complete hydrolysis of the cellulosic polymer. • Using genomic tools to breed or select for modifications in key cell wall chemical and/or ultrastructural traits can have a profound effect on bioenergy processing. These techniques may therefore offer means to overcome the current obstacles that underpin the recalcitrance of lignocellulosic substrates to bioconversion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22239166</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>194</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.</ArticleTitle>
<Pagination>
<MedlinePgn>91-101</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1469-8137.2011.04031.x</ELocationID>
<Abstract>
<AbstractText>• There is a pressing global need to reduce the increasing societal reliance on petroleum and to develop a bio-based economy. At the forefront is the need to establish a sustainable, renewable, alternative energy sector. This includes liquid transportation fuel derived from lignocellulosic plant materials. However, one of the current limiting factors restricting the effective and efficient conversion of lignocellulosic residues is the recalcitrance of the substrate to enzymatic conversion. • In an attempt to assess the impact of cell wall lignin on recalcitrance, we subjected poplar trees engineered with altered lignin content and composition to two potential industrial pretreatment regimes, and evaluated the overall efficacy of the bioconversion to ethanol process. • It was apparent that total lignin content has a greater impact than monomer ratio (syringyl : guaiacyl) on both pretreatments. More importantly, low lignin plants showed as much as a 15% improvement in the efficiency of conversion, with near complete hydrolysis of the cellulosic polymer. • Using genomic tools to breed or select for modifications in key cell wall chemical and/or ultrastructural traits can have a profound effect on bioenergy processing. These techniques may therefore offer means to overcome the current obstacles that underpin the recalcitrance of lignocellulosic substrates to bioconversion.</AbstractText>
<CopyrightInformation>© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada. shawn.mansfield@ubc.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Kyu-Young</ForeName>
<Initials>KY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chapple</LastName>
<ForeName>Clint</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22239166</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2011.04031.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
<name sortKey="Kang, Kyu Young" sort="Kang, Kyu Young" uniqKey="Kang K" first="Kyu-Young" last="Kang">Kyu-Young Kang</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22239166
   |texte=   Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22239166" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020